Model Names refer to Main Engine 1.

## Vacuum Thrust (FME1)

$$FME1 = q \cdot VEME1$$
$$VEME1 = \sqrt{\frac{2K}{K-1} \cdot \frac{R \cdot TC}{M} \cdot \left[1 - \left(\frac{PE}{PC}\right)^{\frac{K-1}{K}}\right]}$$
$$q = \frac{TOTALMASSFLOW}{32.2}$$

where

FME1 = Vacuum Thrust

VEME1 = Exit Volocity

*K* = specific heat ratio

R = universal gas constant = 49,720 ft-lb/slog-R

*M* = molecular weight of combustion in chamber

*TC* = combustion temperature in chamber = 6,459.69°R

*PE* = pressure inside combustion chamber = 2,871 psia

## **Total Mass Flow**

$$TOTALMASSFLOW = \frac{RPMFTME1}{33,936} \cdot (151+29) + \left(\frac{RPMOTME1}{22,357}\right) \left(67+837\left(\frac{MAINXVLVPOSME1}{100}\right)\right)$$

## **HPFTP**

## Flow Rate

$$FLOWRATEFTME1 = \frac{FVLVPOSFTME1}{100} \cdot FUELCONSTFTME1 + \frac{OVLVPOSFTME1}{100} \cdot OXBALLVLVCNSTFTME1$$

where

FVLVPOSFTME1= Main Fuel Valve positionFUELCONSTFTME1= Fuel Valve Constant (for fuel flow contribution) = 78OVLVPOSFTME1= Fuel Pump Turbo Oxidizer Valve positionOXBALLVLVCNSTFTME1= Oxidizer Valve Constant (for oxidizer flow contribution) = 68

### RPM

*RPMFTME*1 = *FLOWRATEFTME*1 · *FUELPUMPCONSTME*1

### where

*FLOWRATEFTME*1 = HPFTP Flow Rate *FUELPUMPCONSTME*1 = Fuel Pump Constant = 232.4383562



#### HPOTP Flow Rate

| 110001 | ale                               |                                                                                             |
|--------|-----------------------------------|---------------------------------------------------------------------------------------------|
| FL     | $OWRATEOTME1 = \frac{FVLVPO}{10}$ | $\frac{SOTME1}{0} \cdot FUELCONSTOTME1 + \frac{OVLVPOSOTME1}{100} \cdot OXBALLVLVCNSTOTME1$ |
| where  |                                   |                                                                                             |
|        | FVLVPOSOTME1                      | = Fuel Valve position (fuel to HPOTP)                                                       |
|        | FUELCONSTFTME1                    | = Fuel Valve Constant (for fuel flow contribution) = 40                                     |
|        | OVLVPOSFTME1                      | = Oxidizer Pump Turbo Oxidizer Valve position                                               |
|        | OXBALLVLVCNSTFTME                 | I = Oxidizer Valve Constant (for oxidizer flow contribution) = 25                           |
|        |                                   |                                                                                             |

# RPM

| where |                   | $RPMOTME1 = \frac{OTURBOFLOWME1}{OXTURBOCONSTME1}$     |
|-------|-------------------|--------------------------------------------------------|
|       | OTURBOFLOWME1 =   | Liquid Oxygen Flow (demand rate from ET Oxidizer Tank) |
|       | OXTURBOCONSTME1 = | Oxidizer Turbo Constant = 0.04173                      |

## LPFTP RPM

$$LOWPRESFRPMME1 = \frac{FTURBOFLOWME1}{155} \cdot 15,761$$

where

FTURBOFLOWME1 = LPFTP Flow Rate

## LPOTP RPM

 $LOWPRESOXRPMME1 = \frac{OTURBOFLOWME1}{933} \cdot 5,019$ 

where

OTURBOFLOWME1 = LPOTP Flow Rate